Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime

نویسندگان

  • Min Tao
  • Atul H. Chokshi
  • Robert D. Conner
  • Guruswami Ravichandran
  • William L. Johnson
چکیده

The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

XAFS analysis of Ni-Zr alloys after thermal and chemical treatment

Introduction Amorphous materials have no long-range order at the atomic length scale and show different properties as compared to typical crystalline materials. Among of them, amorphous alloys are in thermodynamically nonequilibrium, crystallized by heating and used as catalysts and catalyst precursors. Investigations on the relationships between their catalytic performances and structural chan...

متن کامل

Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars

Metallic glasses are lucrative engineering materials owing to their superior mechanical properties such as high strength and great elastic strain. However, the Achilles' heel of metallic amorphous materials - low plasticity caused by instantaneous catastrophic shear banding, significantly undercut their structural applications. Here, the nanolayered crystalline Cu/amorphous Cu-Zr micropillars w...

متن کامل

Phase Separation and Crystallization in Cu-Zr Metallic Glasses

The structural behavior of rapidly quenched Cu-Zr amorphous alloys was analyzed. High energy X-ray diffraction patterns and atomic pair correlation functions exhibit monotonic changes with composition. The experimental results can be well described by a solid solution-like replacement of Cu and Zr atoms in the whole composition range. No indications are observed that would support the existence...

متن کامل

Low-Temperature Synthesis of Ultra-High-Temperature Coatings of ZrB 2 Using Reactive Multilayers

We demonstrate a route to synthesize ultra high-temperature ceramic coatings of ZrB2 at temperatures below 1,300 K using Zr/B reactive multilayers. Highly textured crystalline ZrB2 is formed at modest temperatures, because of the absence of any oxide at the interface between Zr and B, and the very short diffusion distance that is inherent to the multilayer geometry. The kinetics of the ZrB2 for...

متن کامل

Imprinting bulk amorphous alloy at room temperature

We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010